

International Journal of Advance Research in Nursing

Volume 9; Issue 1; January 2026; Page No. 22-28

Received: 12-10-2025

Accepted: 16-11-2025

Indexed Journal
Peer Reviewed Journal

The role of diabetes educator in life-style modification in geriatric patient with diabetes mellitus II: A narrative clinic utility note

Mengutseinuo Goswami

Nursing Officer and Diabetes Educator, Department of Geriatric Medicine, All India Institute of Medical Sciences (AIIMS),
New Delhi, India

Corresponding Author: Mengutseinuo Goswami

DOI: <https://www.doi.org/10.33545/nursing.2026.v9.i1.A.621>

Abstract

The role of a Diabetes Educator (DE) is crucial in addressing the challenges of geriatric patients with diabetes mellitus by providing structured education and support tailored to the needs. This experience explores the multifaceted role of the (DE) in optimizing lifestyle modification (LSM) and prevention and diagnosis of hypoglycemia and also touches caregiver education, dietary guidance among others helping optimizing glycaemic control. LSM remains a cornerstone in geriatric diabetes management, with a focus on balanced nutrition, physical activity, and stress management. DEs play a vital role in adapting lifestyle recommendations to accommodate age-related limitations. Hypoglycemia is a major concern in elderly with diabetes and DEs educate patients and caregivers to recognize early signs, its emergency treatment, adjusting medication regimens in consultation with healthcare providers, and implementing dietary strategies. Implementing structured DE programs can significantly improve diabetes outcomes, reduce complications, and enhance the overall well-being of elderly with diabetes.

Keywords: Diabetes educator, diabetes mellitus ii, geriatric patients, lifestyle modification, hypoglycemia, self-management

Introduction

Why DEs are more relevant to geriatric patients with DM II

Diabetes mellitus type II (DM II) is primarily caused by insulin resistance and B-cell dysfunction [1]. The incidence of DM II increases with age following deficiency of insulin secretion and growing insulin resistance caused by a change in body composition and sarcopenia [2].

More than 29% of people aged over 65 years have diabetes and the number is likely to increase in the coming decades [3, 4]. India is second only to China in the global diabetes epidemic with 77 million people with DM II and 12.1 million are more than 65 years of age, which is estimated to increase to 27.5 million in the year 2045 [5]. Advances in the management of DM II and especially its complications have led to longer survival with better quality of life. However, it has become increasingly challenging due to frailty, multiple comorbidities, polypharmacy, cognitive impairment, psycho-social issues (depression, loneliness, financial hardship, etc.), functional decline etc. Adding to these challenges is complexity of implementing tighter glycaemic control to avoid hypoglycemia due to poor counter-regulatory response in the elderly. So, the clinical guidelines for management of DM II in the elderly recognizes importance of avoiding hypoglycaemia and to maintain quality of life [6]. As the world population is ageing and India being no exception, it is our responsibility to develop effective management strategies for this population. From a

holistic perspective, management of DM II in the geriatric population encompasses the overall management of multiple co-morbidities in the background of patients' functional status and psycho-social circumstances [7]. We have mentioned in our previous work that DE has a clear and important role in the overall management in all stages of care by providing much needed detailed information and support on adequate understanding of the pathology and safe-execution of the prescription by the specialist and other life-style changes to combat diabetes effectively and this is obviously true for geriatric population as well. This is more significant in countries like India where there is an unfavourable ratio of specialist to patients with diabetes and even more important in geriatric population due to presence of multiple health and social issues. The accessibility of the health-care team by the huge number of patients with diabetes in the government hospitals and consequent rush hours can be effectively compensated by the DE by relieving the physician of routine and repeated individual counselling contributing to effective utilization of clinic-time by the physician and avoiding fatigue and burnout. Literature has evidence that this cost-effective intervention can improve patient outcome and warrants more investment in formal training and continuous academic development of DEs [8]. In this manuscript, a step-by-step counselling of geriatric patients with DM II on LSM and hypoglycaemia is described for easy understanding and execution in the routine out patient setting.

Materials and Methods: Patient evaluation and education

1. American Diabetes Association (ADA) in 2025 advises evaluation of the medical, psychological, functional (self-care abilities), and social aspects of older adults with diabetes to establish a structured approach for setting treatment goals and management. ADA also advocates screenings at least once a year for geriatric syndromes (such as cognitive decline, depression, urinary incontinence, falls, chronic pain, and frailty), as well as for hypoglycaemia and polypharmacy, as these factors can influence diabetes management and reduce overall quality of life as a part of diabetes management in the elderly.
2. Assessment of geriatric patients with diabetes should include categorizations of diabetes on the basis of duration, presence of complications and treatment related concerns (e.g. fear of hypoglycemia) [9-11].
3. To screen for functional disability, accelerated muscle loss, mobility impairment, frailty, and coexisting illnesses, such as hypertension, chronic kidney disease,

coronary heart disease, stroke etc.

4. To ensure adequate caregiver support as geriatric patients have more risk for common geriatric syndrome such as cognitive impairment, depression, urinary incontinence, injurious falls, persistent pain, and frailty, polypharmacy etc [12]. Hospital or society-based support workers would be of help if there is a vulnerability identified. All India Institute of Medical Sciences (AIIMS), New Delhi is a tertiary care Medical University and a strong social service unit is associated with all the departments including the out-patient clinics which always proves helpful in such situations.
5. Yearly specialist's evaluation for diabetic foot and eye check-up.

In this regard the 4M framework developed by 'The Institute for Healthcare Improvement' is potentially worth implementing. It involves Mentation, Medications, Mobility, and What Matters Most (person centered), with the understanding of interdependency among them [13].

Table 1: The 4M framework

Mentation	Medications
Self-administration of medications Ability to use diabetes technology Anxiety, depression, and diabetes distress Mild cognitive impairment or dementia Coping skills and self-care	Treatment burden Affordability or insurance coverage End-organ disease or complications affecting medication choice Polypharmacy History of adverse medication effects Social and family support Risk of hypoglycemia, hypoglycemia unawareness, and fear of hypoglycemia
Mobility	What matters most
Foot complications Functional ability Frailty and sarcopenia Leg weakness Neuropathy Vision and hearing impairment	Discussing goals and expectations Symptom and disease burden Meal and treatment preferences (e.g., injections and glucose monitoring) Risks, burdens, and benefits of treatment Loneliness, social isolation, and overall quality of life Life expectancy

Results: Role of DE in lifestyle management (LSM) of geriatric patients with DM II

1. Reduced muscle strength (dynapenia), poor muscle quality, and accelerated loss of muscle mass (sarcopenia) or osteopenia [14-16] and most importantly frailty are well known for association with DM in the elderly. Although there are many definitions of frailty, for simpler clinical application we can accept it as decline in physical performance and an increased risk of negative health outcomes due to physiologic vulnerability and functional or psychosocial stressors.
2. Malnutrition in the geriatric population leads to a multitude of decline in the activities of daily living (cognition, lower limb performance, grip strength, quality of life etc) [17-19]. It is important to recognize that inadequate protein intake is an important nutritional cause of sarcopenia and frailty in older adults and has significant association with diabetes [20, 21]. Nutritional management and an individualised exercise programme (aerobic, weightbearing, and resistance training etc.) could help control sarcopenia and frailty by reducing sedentary time and preventing disability [22]. However, it is important to recognise that the goal of these programs is to enhanced functional status and not

weight loss. Geriatric patients with DM II who are not frail but overweight or obese, an intensive LSM programme to decrease weight is beneficial across multiple domain that includes weight loss, improved physical fitness, increased HDL cholesterol, lowered systolic blood pressure, reduction in A1C levels, waist circumference, and need for medications [23].

3. Nutritional guidance remains a critical component, considering cultural dietary preferences, economic constraints, and misconceptions prevalent in the societies. DEs work with patients and caregivers to develop affordable, culturally acceptable, and nutritionally balanced meal plans. They also address myths regarding food restrictions and the use of alternative remedies that may interfere with conventional treatment.

Discussion: Recommended physical activity participation for people with diabetes [24]

1. For healthy individuals pre-exercise medical clearance is generally unnecessary prior to beginning low- or moderate-intensity exercise (e.g. brisk walking).
2. Advisable for most adults with diabetes 150 min or more of moderate-to-vigorous intensity activity weekly,

spread over at least 3 days/week. There should not be more than 2 consecutive days without activity which otherwise will adversely affect benefits of exercise in preventing insulin resistance. It is also recommended to follow structured lifestyle interventions that include at least 150 min/week of physical activity and dietary changes resulting in weight loss of 5%-7% are recommended to prevent or delay the onset of type 2 diabetes in populations at high risk and with prediabetes. 2-3 sessions in a week of resistance exercise on non-consecutive days are also recommended.

3. Flexibility and balance training are recommended 2-3 times in a week for older adults with diabetes. Yoga and tai chi may be included based on individual preferences to increase flexibility, muscular strength, and balance.
4. Patients are encouraged to increase total daily non-exercise physical activity to gain additional health benefits.
5. It is always advisable to participate in supervised training for maximum benefit.
6. Both aerobic and resistance exercise training for optimal glycemic and health outcomes.

Aerobic exercise involves repeated and continuous movement of large muscle groups^[25] like walking, cycling, jogging, swimming etc. because they rely primarily on aerobic energy-producing systems. The benefits of aerobic training includes increased mitochondrial density, insulin sensitivity, oxidative enzymes, compliance and reactivity of blood vessels, lung function, immune function, and cardiac output^[26] leading to substantially lower cardiovascular and overall mortality in DM I and DM II^[27]. Aerobic training increases cardiorespiratory fitness, decreases insulin resistance, and improves lipid levels and endothelial function in DM I^[28]. In patients with DM II, it reduces A1C, triglycerides, blood pressure, and insulin resistance^[29]. On the other hand, high-intensity interval training (HIIT) enhances rapid improvement of skeletal muscle oxidative capacity, insulin sensitivity, and glycemic control in adults with DM II^[30, 31] and can be performed without deterioration in glycemic control in DM I^[32, 33].

Resistance or strength training involves exercises with free weights, weight machines, body weight, or elastic resistance bands etc. It improves muscle mass, body composition, strength, physical function, mental health, bone mineral density, insulin sensitivity, blood pressure, lipid profiles, and cardiovascular health^[26]. The benefits of resistance exercise on blood sugar control in DM I is not clear^[33] but minimizes risk of exercise-induced hypoglycemia^[34]. It is advisable to perform resistance exercise first which results in less hypoglycemia followed by aerobic exercise rather than the opposite way^[35]. Resistance training helps in improvements in glycemic control, insulin resistance, fat mass, blood pressure, strength, and lean body mass in patients with DM II^[36].

Flexibility exercises improve range of motion of the joints^[37]. Balance exercises benefit gait and prevent falls^[38] even in presence of peripheral neuropathy^[39]. Activities like tai chi and yoga combine flexibility, balance, and resistance activities. Limited joint mobility in DM is following

formation of advanced glycation end products, accumulated during normal aging and are accelerated by hyperglycemia^[40]. Balance training can reduce falls risk by improving balance and gait, even when peripheral neuropathy is present. It is reported that group exercise interventions (resistance and balance training, tai chi classes etc.) reduce falls by 28%-29%^[41]. Yoga may improve stress induced risk in geriatric patients with DM II and offers promise for the prevention or delay in diabetes complications in addition to significant improvement in all stages^[42].

Benefits of and recommendations for reduced sedentary time:^[24]

1. Advised to decrease the amount of time spent in daily sedentary behavior.
2. Advised to interrupt longer sitting periods with light activity every 30 min which will have benefits on blood glucose control. These short light activities are in addition to increased structured exercise and incidental movement.

What must be avoided

Behaviours with low energy expenditure (sedentary behaviour) is associated with increased mortality and morbidity^[43-47]. Sedentary time leads to poorer blood sugar control and metabolic risk in prediabetes also^[48-51]. It has been found that even a brief period of standing (<5 min) or a light walk every 20-30 min improves blood sugar control^[52-56]. Post meal walking habits by adults with DM II for 15 min^[57] and 3 min of light walking in between prolonged sitting with simple body-weight resistance activities every 30 minutes^[58] improves blood sugar control.

We have regularly noticed in the Indian society that post meal nap is almost always the rule rather than exercise in the geriatric population, which adversely affects glycaemic control. We regularly counsel against this habit and encourage to exercise post meal. In a widely cited systematic Review with meta-analysis, Engeroff *et al.* drawn that exercise (e.g. 20 min of walking) has an acute beneficial impact on post meal raise in blood sugar when undertaken as soon as possible after a meal. Longer intervals between eating and exercising weaken this beneficial effect on glucose levels. They also found that exercise prior to a meal does not decrease postprandial rise in blood sugar. Post-meal exercise minimizes blood sugar spikes and might lower the risk for low-grade inflammation diseases and cardiovascular diseases^[59]. From a pure practical stand point, most of the geriatric patients also suffer from generalized arthritis especially knee osteoarthritis, poor vision, poor balance during walking secondary to spinal cord or root compression (myelopathy or radiculopathy or both) in the spinal degenerative cascade or rarely cerebellar degeneration, alcohol use, vitamin B12 deficiency, previous stroke, other neurological disorders (e.g. Parkinsonism) etc. Treatment of any of these conditions is essential to make LSM more feasible and subsequent diabetes control better. We advise on starting small on exercises and to gradually build-up on both physical and psychological strength over weeks and months to be more acceptable to the patients.

Prevention of hypoglycaemia: Hypoglycaemia can be

defined as a plasma glucose level of 70 mg/dl (4 mmol/L) [60-62] or less. While hypoglycaemia can be mild, moderate or severe, it is important to remember that the blood sugar level in mild and moderate hypoglycaemia is same (50 to 70 mg/dL or 2.8-4 mmol/L).

Patients experience only autonomic symptoms like tremulousness, palpitations, anxiety, sweating, tingling, hunger etc. in mild hypoglycaemia and are able to self-treat with a good response to glucose therapy. On the other hand, both autonomic and neuroglycopenic symptoms like weakness, fatigue, drowsiness, difficulty thinking or speaking, confusion, incoordination or odd behaviour etc. happens in moderate hypoglycaemia. However, the symptoms in moderate hypoglycaemia could be managed

similarly by the patients themselves. In severe hypoglycaemia, the blood glucose level is less than 50 mg/dL (2.8 mmol/L), and manifests as decreased level of consciousness and requires external resuscitative measures. Untreated cases may experience seizures, coma, or death. We traditionally advice our geriatric patients with DM II not to go for planned physical exercise if the blood sugar is <120 mg/dL and advice to take meal before going for exercise. Elderly patients with DM II are more prone to hypoglycaemia for a variety of medical and psychosocial reasons. There are some predisposing and predicting factors of hypoglycaemia which might not be limited to the table below and must be actively looked into during encounters with the geriatric patients with diabetes.

Table 2: Predisposing and Precipitating Risk Factors of hypoglycemia [63, 6, 4]

Predisposing factors	Precipitating Factors
Advanced age	Antidiabetic agents like sulfonylureas, meglitinides, and insulin
History of severe hypoglycaemia	Potentiators of sulfonylureas
Insulin intake for > 10 years	Other medications (e.g. ACE inhibitors)
Chronic renal failure	Overmedication
Chronic liver disease	Missed meals / Delayed meals / Eating less food
Hypoglycaemic unawareness/diminished counterregulatory response	Alcohol intake
Cognitive impairment	Acute illness (poor intake): e.g. Addison's disease
HbA1c $< 6\%$	Increased exercise
	Gastroparesis

While worsening kidney functions, insulin deficiency and insulin therapy, irregular meal intake [60], other diabetes medications (sulfonylureas, meglitinide etc.) loss of counter-regulatory homeostatic response, multiple comorbidities with poly-pharmacy, dementia are important; social isolation, will-full negligence, depression, poverty etc also contribute to precipitation of hypoglycaemia. Dementia and depression could lead to cognitive impairment causing missed meals, forget to take their medications, overmedication, or forget to check blood glucose. There may also be issues with glucose monitoring, including using outdated strips, incorrect technique (both blood glucose monitoring and insulin injection etc.). Hence, assessment for cognitive impairment is essential in elderly patients with DM II.

Advices: [24]

1. To assess and address episodes of hypoglycaemia at routine visits for the obvious reasons mentioned above.
2. To advice use CGM for geriatric patients with DM II whenever feasible on insulin therapy to improve glycaemic outcomes and reduce episodes of hypoglycaemia by detecting early.
3. To consider the use of automated insulin delivery systems, mechanical insulin delivery systems, other advanced insulin delivery devices (connected pens) to reduce risk of hypoglycaemia.

Challenges in managing hypoglycaemia: accuracy of measurement of glucose levels

Traditionally, diabetes treatment is followed-up with self-monitoring blood glucose (SMBG) with remarks on fluctuations. But they usually lack an alarm for high or low glucose values, which would be particularly useful for older patients with reduced hypoglycemia awareness. Another

limitation is accuracy especially at glucose levels < 75 mg/dL. CGM devices are found to be more accurate and allow for better understanding of how daily activities, meals, and medications affect blood glucose levels culminating in better control and reduce hypoglycaemia [65]. However, the cost and availability of such new devices, particularly to geriatric patients and ease of use are yet to be determined in the context of different societies.

Home treatment of hypoglycaemia

1. Any episodes of hypoglycaemia is a cause of concern and specially in geriatric patients with diabetes and we regularly advice to reach emergency department of the nearest hospital at the earliest.
2. However, as emergency health care might not be available for a variety of reasons, we also advice the following as soon as any symptoms of hypoglycaemia appears to prevent further deterioration of blood sugar level.
3. We also advice that family, co-workers, caregivers, teachers, and other people often around the patient should know how to handle hypoglycaemia.

The 15-15 rule [66]

1. To take 15 grams of simple carbohydrate. We advise for 15 grams of glucose powder (3 tea spoon full) or 120 ml of fruit juice as good options and to wait for 15 minutes.
2. Recheck blood sugar. If it's still less than 70 mg/dL, repeat this process.
3. Keep repeating these steps until blood sugar is back up in target range (> 100 mg/dL).
4. Once the target blood sugar level is attained, we advise to eat a balanced snack or meal with protein and complex carbohydrates.

Tips to keep in mind

To check blood sugar often when lows are more likely, such as when the weather is hot, during travel and during increased physical activity.

DM II patients should never skip meals.

We instruct our all patients with diabetes to carry 4-5 hard candies while going out for any work to prevent hypoglycaemia if any symptoms are felt.

We also advice all the patients with diabetes to carry an identity card with details of name, address, caregiver's phone number or emergency phone number and a line in bold stating 'I have diabetes and I have candies in case I am found unwell' would be helpful in the time of need in local dialect.

We advise not to skip or miss insulin after a single hypoglycaemic episode. Instead, once blood sugar is corrected or above 100 mg/dl we advise to take insulin and to identify the reason for hypoglycaemia. If hypoglycaemic episodes are frequent or at a particular time we advise for a physician's consultation for possible adjustment of insulin and to rule out complications. We also advice self-adjustment of the insulin dose regularly even before any episodes of hypoglycaemia to pre-emptively prevent hypoglycaemia and also after any or repeated hypoglycaemia or continuous hyperglycaemia. This avoids erratic change in insulin dose and reduces the visit to the physician or visit in a more controlled or relaxed clinical situation. Apart from minimizing the intensity of hypoglycaemia it also manages better logistic issues of the geriatric patients with diabetes like frequent travels, physician burn-out etc.

Conclusion

Preventing long-term complications requires consistent monitoring and adherence to treatment regimens and persistent LSM. Apart from the detailed counselling on LSM; DEs emphasize regular screening, foot care, blood pressure control, and medication adherence, thereby reducing hospitalization rates and improving quality of life. LSM which is the central theme should be tailored to the functional status of the geriatric patient.

In India, caregiver education is particularly important as family members are primary caregivers for elderly patients in most cases. Many caregivers lack formal training in diabetes management, leading to inadequate care. DEs bridge this gap by training caregivers in medication administration, insulin injection techniques, dietary planning, and emergency management of hypoglycemia.

Encouraging self-management of diabetes empower elderly patients to take an active role in their care for better outcome. DEs provide practical training on glucometer usage, insulin self-administration, medication adherence, and recognizing symptoms of complications, promoting independence and reducing healthcare dependence.

A major challenge in our society is the lack of awareness and accessibility to diabetes education in rural and low-income urban population. Social stigma, financial barriers, and limited healthcare infrastructure hinder effective diabetes management. This research highlights the need for community-based DE programs, government initiatives, and telemedicine solutions to enhance diabetes care accessibility.

Diabetes Educator is a pivotal figure in managing geriatric patients with DM II by integrating medical, lifestyle, and psychosocial aspects of care. Addressing the gaps in diabetes education in contemporary time requires multi-stakeholder collaboration, policy changes, and increased awareness. Implementing structured DE programs can significantly improve diabetes outcomes, reduce complications, and enhance the overall well-being of elderly diabetics.

Conflict of Interest

Not available.

Financial Support

Not available.

References

1. Kitabchi AE, *et al.* Role of Insulin Secretion and Sensitivity in the Evolution of Type 2 Diabetes in the Diabetes Prevention Program: Effects of Lifestyle Intervention and Metformin. *Diabetes* 2005;54(8):2404-2414.
2. Katarzyna M, Małgorzata G-Z. Diabetes in the elderly. *Menopause Rev* 2017;16(2):38-43.
3. Laiteerapong N, Huang ES. Diabetes in older adults. In: Cowie CC, Casagrande SS, Menke A, *et al.*, editors. *Diabetes in America*, 3rd ed. National Institute of Diabetes and Digestive and Kidney Diseases; 2018. <https://www.niddk.nih.gov/about-niddk/strategic-plans-reports/diabetes-in-america-3rd-edition>
4. Center for Disease Control and Prevention. National Diabetes Statistics Report. 2024. <https://www.cdc.gov/diabetes/php/data-research/index.html>
5. Rajendra P, Viswanathan M. Epidemiology of type 2 diabetes in India. *Indian J Ophthalmol* 2021;69:2932-2938.
6. Christiaens A, Henrard S, Zerah L, *et al.* Individualisation of glycaemic management in older people with type 2 diabetes: A systematic review of clinical practice guidelines recommendations. *Age Ageing* 2021;50:1935-1942.
7. Hiroyuki U. Management of older adults with diabetes mellitus: Perspective from geriatric medicine. *J Diabetes Investig* 2024;15:1347-1354.
8. Mengutseino G. Diabetes Educator: The Role and Experience in a Tertiary Government Hospital - A Technical Note. *International Journal of Nursing Education* 2021;13(3).
9. Kirkman MS, Briscoe VJ, Clark N, *et al.* Diabetes in older adults. *Diabetes Care* 2012;35:2650-2664.
10. Young-Hyman D, de Groot M, Hill-Briggs F, Gonzalez JS, Hood K, Peyrot M. Psychosocial care for people with diabetes: a position statement of the American Diabetes Association. *Diabetes Care* 2016;39:2126-2140.
11. Institute of Medicine of the National Academies. Cognitive aging: progress in understanding and opportunities for action. <https://nationalacademies.org/hmd/Reports/2015/Cognitive-Aging.aspx>
12. Laiteerapong N, Huang ES. Diabetes in older adults. In:

Cowie CC, Casagrande SS, Menke A, *et al.*, editors. Diabetes in America, 3rd ed. National Institute of Diabetes and Digestive and Kidney Diseases; 2018. <https://www.niddk.nih.gov/about-niddk/strategic-plans-reports/diabetes-in-america-3rd-edition>

13. Cacchione PZ. Age-friendly health systems: the 4Ms framework. *Clin Nurs Res* 2020;29:139-140.
14. Mori H, Kuroda A, Yoshida S, *et al.* High prevalence and clinical impact of dynapenia and sarcopenia in Japanese patients with type 1 and type 2 diabetes: findings from the Impact of Diabetes Mellitus on Dynapenia study. *J Diabetes Investig* 2021;12:1050-1059.
15. Park SW, Goodpaster BH, Strotmeyer ES, *et al.* Accelerated loss of skeletal muscle strength in older adults with type 2 diabetes: the health, aging, and body composition study. *Diabetes Care* 2007;30:1507-1512.
16. Park SW, Goodpaster BH, Strotmeyer ES, *et al.* Decreased muscle strength and quality in older adults with type 2 diabetes: the health, aging, and body composition study. *Diabetes* 2006;55:1813-1818.
17. Liu G-X, Chen Y, Yang Y-X, *et al.* Pilot study of the Mini Nutritional Assessment on predicting outcomes in older adults with type 2 diabetes. *Geriatr Gerontol Int* 2017;17:2485-2492.
18. Malara A, Sgrò G, Caruso C, *et al.* Relationship between cognitive impairment and nutritional assessment on functional status in Calabrian long-term-care. *Clin Interv Aging* 2014;9:105-110.
19. Alfonso-Rosa RM, Del Pozo-Cruz B, Del Pozo-Cruz J, Del Pozo-Cruz JT, Sañudo B. The relationship between nutritional status, functional capacity, and health-related quality of life in older adults with type 2 diabetes: a pilot explanatory study. *J Nutr Health Aging* 2013;17:315-321.
20. Tao J, Ke Y-Y, Zhang Z, *et al.* Comparison of the value of malnutrition and sarcopenia for predicting mortality in hospitalized old adults over 80 years. *Exp Gerontol* 2020;138:111007.
21. Beaudart C, Sanchez-Rodriguez D, Locquet M, Reginster J-Y, Lengelé L, Bruyère O. Malnutrition as a strong predictor of the onset of sarcopenia. *Nutrients* 2019;11:11.
22. Pahor M, Guralnik JM, Ambrosius WT, *et al.* Effect of structured physical activity on prevention of major mobility disability in older adults: the LIFE study randomized clinical trial. *JAMA* 2014;311:2387-2396.
23. Wing RR, Bolin P, Brancati FL, *et al.* Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. *N Engl J Med* 2013;369:145-154.
24. Colberg SR, *et al.* Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. *Diabetes Care* 2016;39:2065-2079.
25. Physical Activity Guidelines Advisory Committee. Physical Activity Guidelines Advisory Committee Report. Washington, DC: U.S. Department of Health and Human Services; 2008. p. 683.
26. Garber CE, Blissmer B, Deschenes MR, *et al.* American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. *Med Sci Sports Exerc* 2011;43:1334-1359.
27. Sluik D, Buijsse B, Muckelbauer R, *et al.* Physical activity and mortality in individuals with diabetes mellitus: a prospective study and meta-analysis. *Arch Intern Med* 2012;172:1285-1295.
28. Chimen M, Kennedy A, Nirantharakumar K, Pang TT, Andrews R, Narendran P. What are the health benefits of physical activity in type 1 diabetes mellitus? A literature review. *Diabetologia* 2012;55:542-551.
29. Snowling NJ, Hopkins WG. Effects of different modes of exercise training on glucose control and risk factors for complications in type 2 diabetic patients: a meta-analysis. *Diabetes Care* 2006;29:2518-2527.
30. Jolleyman C, Yates T, O'Donovan G, *et al.* The effects of high-intensity interval training on glucose regulation and insulin resistance: a meta-analysis. *Obes Rev* 2015;16:942-961.
31. Little JP, Gillen JB, Percival ME, *et al.* Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. *J Appl Physiol* (1985) 2011;111:1554-1560.
32. Dubé MC, Lavoie C, Weisnagel SJ. Glucose or intermittent high-intensity exercise in glargine/glulisine users with T1DM. *Med Sci Sports Exerc* 2013;45:3-7.
33. Tonoli C, Heyman E, Roelands B, *et al.* Effects of different types of acute and chronic (training) exercise on glycaemic control in type 1 diabetes mellitus: a meta-analysis. *Sports Med* 2012;42:1059-1080.
34. Yardley JE, Kenny GP, Perkins BA, *et al.* Resistance versus aerobic exercise: acute effects on glycemia in type 1 diabetes. *Diabetes Care* 2013;36:537-542.
35. Yardley JE, Kenny GP, Perkins BA, *et al.* Effects of performing resistance exercise before versus after aerobic exercise on glycemia in type 1 diabetes. *Diabetes Care* 2012;35:669-675.
36. Gordon BA, Benson AC, Bird SR, Fraser SF. Resistance training improves metabolic health in type 2 diabetes: a systematic review. *Diabetes Res Clin Pract* 2009;83:157-175.
37. Herriott MT, Colberg SR, Parson HK, Nunnold T, Vinik AI. Effects of 8 weeks of flexibility and resistance training in older adults with type 2 diabetes. *Diabetes Care* 2004;27:2988-2989.
38. Morrison S, Colberg SR, Mariano M, Parson HK, Vinik AI. Balance training reduces falls risk in older individuals with type 2 diabetes. *Diabetes Care* 2010;33:748-750.
39. Morrison S, Colberg SR, Mariano M, Parson HK, Vinik AI. Balance training reduces falls risk in older individuals with type 2 diabetes. *Diabetes Care* 2010;33:748-750.
40. Abate M, Schiavone C, Pelotti P, Salini V. Limited joint mobility in diabetes and ageing: recent advances in pathogenesis and therapy. *Int J Immunopathol Pharmacol* 2010;23:997-1003.
41. Gillespie LD, Robertson MC, Gillespie WJ, *et al.* Interventions for preventing falls in older people living in the community. *Cochrane Database Syst Rev* 2012;9:CD007146.

42. Rani KB, Sreekumaran E. Yogic practice and diabetes mellitus in geriatric patients. *Int J Yoga* 2013;6:47-54.

43. Biswas A, Oh PI, Faulkner GE, *et al.* Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. *Ann Intern Med* 2015;162:123-132.

44. Chau JY, Grunseit AC, Chey T, *et al.* Daily sitting time and all-cause mortality: a meta-analysis. *PLoS One* 2013;8:e80000.

45. Hu FB, Leitzmann MF, Stampfer MJ, Colditz GA, Willett WC, Rimm EB. Physical activity and television watching in relation to risk for type 2 diabetes mellitus in men. *Arch Intern Med* 2001;161:1542-1548.

46. Hu FB, Li TY, Colditz GA, Willett WC, Manson JE. Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women. *JAMA* 2003;289:1785-1791.

47. Wilmot EG, Edwardson CL, Achana FA, *et al.* Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. *Diabetologia* 2012;55:2895-2905.

48. Dunstan DW, Salmon J, Healy GN, *et al.* Association of television viewing with fasting and 2-h postchallenge plasma glucose levels in adults without diagnosed diabetes. *Diabetes Care* 2007;30:516-522.

49. Healy GN, Dunstan DW, Salmon J, *et al.* Objectively measured light-intensity physical activity is independently associated with 2-h plasma glucose. *Diabetes Care* 2007;30:1384-1389.

50. Healy GN, Dunstan DW, Salmon J, *et al.* Breaks in sedentary time: beneficial associations with metabolic risk. *Diabetes Care* 2008;31:661-666.

51. Fritschi C, Park H, Richardson A, *et al.* Association between daily time spent in sedentary behavior and duration of hyperglycemia in type 2 diabetes. *Biol Res Nurs* 2016;18:160-166.

52. Buckley JP, Mellor DD, Morris M, Joseph F. Standing-based office work shows encouraging signs of attenuating post-prandial glycaemic excursion. *Occup Environ Med* 2014;71:109-111.

53. Henson J, Davies MJ, Bodicoat DH, *et al.* Breaking up prolonged sitting with standing or walking attenuates the postprandial metabolic response in postmenopausal women: a randomized acute study. *Diabetes Care* 2016;39:130-138.

54. Thorp AA, Kingwell BA, Sethi P, Hammond L, Owen N, Dunstan DW. Alternating bouts of sitting and standing attenuate postprandial glucose responses. *Med Sci Sports Exerc* 2014;46:2053-2061.

55. Dunstan DW, Kingwell BA, Larsen R, *et al.* Breaking up prolonged sitting reduces postprandial glucose and insulin responses. *Diabetes Care* 2012;35:976-983.

56. Larsen RN, Kingwell BA, Robinson C, *et al.* Breaking up of prolonged sitting over three days sustains, but does not enhance, lowering of postprandial plasma glucose and insulin in overweight and obese adults. *Clin Sci (Lond)* 2015;129:117-127.

57. van Dijk JW, Venema M, van Mechelen W, Stehouwer CD, Hartgens F, van Loon LJ. Effect of moderate-intensity exercise versus activities of daily living on 24-hour blood glucose homeostasis in male patients with type 2 diabetes. *Diabetes Care* 2013;36:3448-3453.

58. Dempsey PC, Larsen RN, Sethi P, *et al.* Benefits for type 2 diabetes of interrupting prolonged sitting with brief bouts of light walking or simple resistance activities. *Diabetes Care* 2016;39:964-972.

59. Engeroff T, Groneberg DA, Wilke J. After Dinner Rest a While, After Supper Walk a Mile? A Systematic Review with Meta-analysis on the Acute Postprandial Glycemic Response to Exercise Before and After Meal Ingestion in Healthy Subjects and Patients with Impaired Glucose Tolerance. *Sports Medicine* 2023;53:849-869.

60. American Diabetes Association. Diabetes management in correctional institutions. *Diabetes Care* 2010;33(suppl 1):S75-S81.

61. Canadian Diabetes Association. Canadian Diabetes Association 2008 Clinical Practice Guidelines for the Prevention and Management of Diabetes in Canada. *Can J Diabetes* 2008;32(1):S48-S64, S150-S157.

62. Yale JF, Begg I, Gerstein H, *et al.* 2001 Canadian Diabetes Association clinical practice guidelines for the prevention and management of hypoglycemia in diabetes. *Canadian Journal of Diabetes* 2002;26(1):22-35.

63. Chelliah A, Burge MR. Hypoglycemia in elderly patients with diabetes mellitus: cause and strategies for prevention. *Drugs Aging* 2004;21(8):511-530.

64. Donnelly LA, Morris AD, Frier BM, *et al.* Frequency and predictors of hypoglycemia in Type 1 and insulin-treated Type 2 diabetes: A population based study. *Diabet Med* 2003;22(6):449-455.

65. Freeman J. Management of hypoglycemia in older adults with type 2 diabetes. *Postgraduate Medicine* 2019;131(4):241-250.

66. Centers for Disease Control and Prevention. Treatment of low blood sugar (hypoglycemia). <https://www.cdc.gov/diabetes/treatment/treatment-low-blood-sugar-hypoglycemia.html>

How to Cite This Article

Goswami M. The role of diabetes educator in life-style modification in geriatric patient with diabetes mellitus II: A narrative clinic utility note. *International Journal of Advance Research in Nursing*. 2026;9(1):22-28.

Creative Commons (CC) License

This is an open-access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.